NYU

Lecture 04
Pruning Strategies for Efficient
DNN Implementation

Notes

e Lab1 will be released by tomorrow!
e LabO will be posted to help you understand DNN pruning.

NYU SAI LAB

Recap

e Transformer basics
e \/ision transformer
o AIGC
o LLM
e Self-supervised learning

NYU SAI LAB

Topics

e \Why pruning?
o Running cost of CNNs and Transformers
Sparse matrix encoding
General pruning techniques
Transformer pruning
Large model pruning

NYU SAI LAB

Topics

e \Why pruning?
o Running cost of CNNs and Transformers
Sparse matrix encoding
General pruning techniques
Transformer pruning
Large model pruning

NYU SAI LAB

Convolutional Layers

Convolution

ili?l

Inputfeature maps Filter Output feature mapi

e Core building block of a CNN, it is also the most computational intensive layer.

NYU SAI LAB .

Convolution

Input feature
maps

.
-
.

NYU SAI LAB

/

R

Filters

M filters

Output feature

maps

.
.
-

Convolution

Filters
Input Feature Output feature
maps maps
C 0. . M o‘
C .
H \ |
R || E
W S F
M filters

NYU SAI LAB

Convolution

Input Feature

.
-
.

maps

NYU SAI LAB

Filters

Output feature
maps

Computational Cost of Convolution

— Input Feature
I maps
R — C RS
[
H
HERL Number of W
S MACs=RS
w F

Number of MACs: MxCxRxSxExF
Storage cost: 32x(MCRS+CHW+MEF)

The input activation and output activations are transient storage, can be
eliminated once this layer is finished processing.

Filters
c.’ Output Feature

| maps
R I *

I —_—

|| E
F
M filters

10

Convolution with Sparse Weight

If p percent of the
weights are zeros

Rl T —| Number of nonzero
S MACs=(1-p)RS

e Number of MACs: (1-p)xMxCxRxSxExF
e \Weight pruning can reduce the computations.
e Sparse weight matrices can be stored more efficiently, which helps minimize memory usage.

NYU SAI LAB

Convolution with Sparse Weight

If p percent of the weights are zeros,
and q percent of input are zeros

Number of
~~. nonzero MACs
2(1-p)(1-9)RS

Ripv = [—
S

e Number of MACs2(1-p)*(1-q)xMxCxRxSxExF
e Input pruning can also reduce the computations.
e Sparse input and weight matrices can be stored more efficiently, which helps minimize

memory usage.

NYU SAI LAB

Convolution with Sparse Weight

Step 1 Step 2

Weight Activation

pruning pruning « S
Offline Online

e Activation sparsity requires online pruning, which leads to additional computation.

NYU SAI LAB

Computational Cost for MLP

Xeudos

e B is the batch size
e Number of MACs:
Bx2 = = Bx3 o Bx2x3 = 6B
e Storage cost:
o 6 x32=192 bits (Weights)
%3 o (2B + 3B) x 32 bits (Activation)

NYU SAI LAB

Transformers

Z
linear

Block N
Softmax
Feedforward AN : '
layer (FFN) || [Scale
Block 2 QlKT
Self-attention ,/
layer (SA) /| Block 1 Q T K T \4

| [Reshape] [Reshape] [Reshape]

T T T LayerNorm
_ _ _ (linear] [linear | [linear]
e The input sentence has three dimensions: T T
Y

o B:batch
o L:sequence length (number of words) [Layernorm]
o E:embeddings |

X
Self attention block Feed forward block

NYU SAI LAB (SA) (FFN)

Computational Cost of Transfm;mer

BxLxE

BxLxL

ExEl Iinearl l QKT I

BxLxE
BxLxE?

BxLxE BxLxE
BxL2xE

BxLxE

(X)—BxLxE

BxLxL

BxL2xE

Total = 4BxLxE? + 2BxL2xE

NYU SAI LAB

[Softmax]

Scale

QK"

Q| K | v
[Reshape] [Reshape] [Reshape]
i i i
(linear] [linear | [linear]
T !
[Layernorm] 16

%

Computational Cost of Transformer

BxLx4E BxLxE
BxLxE Bx| x4FE
BxLx4E?2 BxLx4E?

Total = 4BxLxE? + 2BxL2xE + 8BxLxE?
= 12BxLxE? + 2BxL*xE

NYU SAI LAB

LayerNorm
Y

17

Computational Cost of Transformer

BxLxE BxLxE BxLxE
[If p percent of the [If p percent of the [
weights are zeros weights are zeros
ExE | linear (1-p)ExE[linear (1-p)ExE| linear
| | | _
BxLxE BxLxE BX(1-Q)(LXE) aqifatons are seros
Nonzero MACs Nonzero MACs
=(1-p)xBxLxE? 2(1-p)(1-q)xBxLxE?

NYU SAI LAB o

Topics

e \Why pruning?

o Running cost of CNNs and Transformers
Sparse matrix encoding

General pruning techniques
Transformer pruning

Large model pruning

NYU SAI LAB

19

Pruning

weight filter

e Pruning reduces both computational demands and storage costs.

NYU SAI LAB

013 [0.2] 1 |0.4[0.2]-1 | 3 |0.4|0.6
0.2(1.2]0.2| -1 [0.2|-3 |05(-3| 3 | -1
-8 (-1 [0.6|1.4]|01|0.1(-2 |01 |-7 | -1

Prune if |w|<1

1.2

14

20

Benetfit of Pruning

e Reduce computational complexity
o To support sparse matrix with random sparsity pattern, specialized
hardware is required.

e Reduce the storage complexity
o To achieve it, we need to encode the sparse weights.

Activation
pruning
—_— * —_
| Encoder |
o <5
memory

NYU SAI LAB

Sparse Matrices Encodings

e Efficient encoding scheme for sparse matrix storage.

o

©)
O
©)

NYU SAI LAB

Bitmap

Run Length Encoding (RLE)

Coordinate format (COOQ)

Compressed sparse row (CSR), Compressed sparse column (CSC)

22

Bitmap Encoding

e In summary, the storage cost of bitmap
: _ encoding (in bits) is:
ﬂ Bitmap encoding (1-p)xLxn + L
13,1,2,3] [0,1,0,1,0,0,1,1,0,0] e n: number bits per value
value Indices e L: number of elements
e p: sparsity (%)

0O|3(0|1]0|0|2]|3|0 |0

e Bitmap is effective for compressing the tensors of low or moderate sparsity.
e Encoding cost is low.

NYU SAI LAB

23

Run Length Encoding (RLC)

e Record the values and length of zero runs between the values.
e Assume 2 bits are used to encode the length of zero runs (0-3)

e Each value requires 2 bits.

0

3

0

]

0

3

0

0

value [3,1,2,3]

U

0|2
@RLC

[1,1,2,0,2]

U

Zero runs
length

[11,01,10,11] [01,01,10,00,10]

e RLC can reduce storage requirement when sparsity is moderate.

NYU SAI LAB

0|3]0|0 |0

3

value [3,0,2,3]

U

0|2
@RLC

[1,3,0,0,2]

U

Zero runs
length

[11,00,10,11] [01,11,00,00,10]

24

Coordinate Format (COQ)

O|3|O0|1]O
0(2]3[0]0

0O|3(0|1]|]0|0|2]|3|0 |0

ﬂ COO
ﬂ COO
[3,1,2,3] [1,3,6,7]
value Indices [3,1,2,3] [0,0,1,1] [1,3,1,2]
0 il value X Indices vy Indices
[11,01,10,11] [001,011,110,111] U " y!
3 bits perindex [11,01,10,11] [00,00,01,01] [01,11,01,10]

2 bits per index
e COQO is efficient with the sparsity level is extremely high.

NYU SAI LAB .

Compressed Sparse Row/Column (CSR/CSC)

10 20 0 0 0 O

0 80 0 40 0 0 \ = [10 20 30 40 50 60 70 80]
COL INDEX = [0 1 1 3 2 3 4 5]

¢ 0 50 60 g0 0 ROW INDEX = [0 2 4 7 8]

0 0 0 0 0 80

Sparse matrix Encoded form

e CSR/CSC is also suitable for matrices with high sparsity.
e The row index specifies the amount of nonzero values within each row.

NYU SAI LAB

26

Encoding Schemes under Different Level
of Sparsities

dense bitmap runlength / delta compressed sparse row / column coordinate offset
[0,2,0,0,3,4,0,0,0,0,0,5] (010011000001 | 2345] [1]2,2]3,0]4,5]5] [1][1]2,2]3,0]4,5]5] [1]2,5]3,6]4, 12|5]
I | I | | |
[0% [10% [70% [90% [99.9% [99.99999%
dense low sparsity medium sparsity moderate sparsity high sparsity extreme

e Different encoding scheme can be applied for different sparsity levels.

NYU 8 I L B Hoefler, Torsten, et al. "Sparsity in deep learning: Pruning and growth for efficient inference and training in neural
A A networks." Journal of Machine Learning Research 22.241 (2021): 1-124.

27

Topics

e \Why pruning?

o Running cost of CNNs and Transformers
Sparse matrix encoding
General pruning techniques

Transformer pruning

Large model pruning

NYU SAI LAB

28

Pruning Criteria: Magnitude Pruning

e We can prune the weights using 01] 3 02| 1 [o4fo2] 1 |3 Jo.4os
the importance score: Magnitude @
m Magnitude pruning
m Gradient o|3|o|1]lo]o|a]|3]|o]0
m Hessian
|

{1 Lif |lwillr > a
nm; =

6 =3 ||wi||1 < a

NYU SAI LAB

Pruning Criteria: Training Loss Change

L=0.01 L=1.33
1 1 Lw)= > Uy, Fu(z))
. . (33 7y) ED training
linear linear
Frear :> [- Dtraining: is the training dataset
Fw(.): neural network function with parameter w.
| | L(.): Training loss function
Xtraining Xtraining

e Another pruning principle is to minimize the impact on training loss as much as possible.
e Foratrained DNN, L(.) remains low.

NYU SAI LAB o

Pruning Criteria: Training Loss Change

L=0.01

T

linear

Xtraining

W=wW

=

L=0.14

T

linear

Xtraining

Lw)= Y Uy Fule))

(w 7y) €D training

Dtraining: is the training dataset
Fw(.): neural network function with parameter w.
I(.): loss function

e Another pruning principle is to minimize the impact on training loss as much as possible.
e Foratrained DNN, L(.) remains low.

NYU SAI LAB

31

Pruning Criteria: Training Loss Change

e Pruning criteria: L(w') = L(w) + VL(w)! (w—w)
o Keep the change on training loss
as small as possible
o Let L(.) denote the training loss L(0) — L(w) = Ew
o For trained DNN, L(.) will be low.

e If wis pruned, then we have w’'=0:

dw

e We can use it as the pruning criteria
o Sort the weight based on the product
of gradient and its value.

NYU SAI LAB

Pruning Criteria: Training Loss Change

L(w') = L(w) + VL(w)! (w— w)
—0—%(10 —w')IViL(w)(w — w')

When reflecting on each individual value,
the pruning criteria becomes:

£(0) — L(w) = dfig") w + % dzlf;’”) o2

The gradient is usually estimated to zero.

NYU SAI LAB

2 (1989).

Multiple approaches have been propose to
estimate the Hessian:
o Fisher information matrix

LeCun, Yann, John Denker, and Sara Solla. "Optimal brain damage." Advances in neural information processing systems

Granularity of Pruning

linear

L=1.33

T

linear

linear

|
Xtraining

NYU SAI LAB

linear

|
Xtraining

Buiunid

L=1.33

T

linear

linear

|
Xtraining

Buiunig Buiunid

L=1.33
Y
linear S,
3
Y
linear S,
3
|
Xtraining

34

Computational Flow of Pruning

Original flow Flow with pruning
W
\ WHEHw
%)= Y Vi N\~ ~
// _ARTY Z
A A

OL 8L dZ Y W'
OW ~— 9Z 9Y oW’ oW

ow'’
ow

Y = WA, Z = ReLU(Y)

0L OL 8Z Y
oW 8Z oY oW

=0 if W is pruned, otherwise = 1

NYU SAI LAB .

Computational Flow of Pruning

W

Original flow

Flow with pruning

WHEHw

pCaiaaTe

Y = WA, Z = ReLU(Y)

0L OL 8Z Y
oW 8Z oY oW

NYU SAI LAB

N\
AA,/X_’Y_’Z

L 0L dZ 8Y OW'
OW — 8Z oY W' oW
ow'
ow
dL dL dZ dY dA'

dA ~ dZ dY dA dA

= 0 if W is pruned, otherwise = 1

Pytorch Implementation of Iterative Pruning

def forward(self, x): mask = nn.Parameter(... requires_grad=False)

y = F.conv2d(self.w, x) For w in each layer:

return y mask = mask Prune (w, mask, percent)
w = W * mask

Fake pruning to stimulate the def forward(self, x):

impact of sparse weight on y = F.conv2d(self.w, x)
the model accuracy! return y

37

NYU SAI LAB

Regularization-based Pruning

' induces sparse solutions for least squares

£? regularization £! regularization

Xl = "Il

r=1

w2

04 S A : /(0+ ; ’(

S - " | oy ——

-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 Y 0 1 2 3 4
wy w

min L(w)+ A||w|l2 min L(w)+ A||w||1 Lasso

e Add this term can make DNN naturally select the unimportant weight during the training process.

NYU 8 AI L AB Source:https://satishkumarmoparthi.medium.com/why-l1-norm-creates-sparsity-compared-with-12-norm-3c6fa9c607f4#:~:text=The%20reason%20for%2 38
Ousing%20the,and%20thus%20a%20sparse%20solution.

Regularization-based Pruning

/

i

I

|/

/

y = sign(x)

Taxonomy of Pruning

e Pruning techniques can be classified from different perspectives
o lterative pruning, zero-shot pruning

Structured pruning, unstructured pruning, N:M pruning

Weight pruning, activation pruning

Static pruning and dynamic pruning

Pruning for inference, pruning for training

O O O O

NYU SAI LAB

40

When to Prune? ;

A ' 4 : A o [Prune part Of}
train and sparsify sparsify during training :

g (including iterative sparsification) the Welght If the target
o ﬂ sparsity ratio
% is not met
3 Retrain the

E

- current model

T 4 iterations =
Train — Prune Train&Prune Resultant
(zero-shot pruning) (Iterative pruning) model

e Usually interactive pruning has the best accuracy performance, however, it also requires
multiple rounds of training and computational cost.
e Zero-shot pruning also termed post-training pruning.

NYU SAI LAB

41

Iterative Pruning

L=0.01 L=1.33 L=0.07
]]]
linear linear linear
linear linear linear
| | |
Xtraining Xtraining Xtraining

Round 1

NYU SAI LAB

L=1.57

T

L=0.10

T

linear

linear

Xtraining

=

linear

linear

Xtraining

Round 2

42

Lottery Ticket Hypothesis

‘A randomly-initialized, dense neural network contains a
subnetwork that is initialized such that—when trained in
iIsolation—it can match the test accuracy of the original network
after training for at most the same number of iterations.”

NYU SAI LAB Frankle, Jonathan, and Michael Carbin. "The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv
2018." arXiv preprint arXiv:1803.03635 (1810).

43

How to Find the Winning Tickets?

e Iterative Magnitude Pruning (IMP):
e Initialized DNN with random weights wo.
e \While the sparsity level has not reached:

@)
O
O

Train the DNN with k epochs until convergence

prune p% of the nonzero weights.

Reinitialize the remaining weights using the values in wo, finetune the remaining weights for k
epochs (Rewind).

e Return the weights.
e Later work has shown that rewind to wi (i is small) works better for larger networks.

NYU SAI LAB

Frankle, Jonathan, et al. "Stabilizing the lottery ticket hypothesis." arXiv preprint arXiv:1903.01611 (2019).

44

Weight Rewinding

Conventional iterative pruning

Prune p%
Tralnmg welghts Retrammg

Initial DNN with Wo Result weights
Conventional iterative pruning with weight rewinding

Prune p%
Training %% weights % Rewinding % Retraining

Initial DNN with Wo Rewind to Wo or Wi Resultant weights
(i is small)
e The pruned architecture itself, rather than a set of inherited “important” weights, is more crucial to
the accuracy in the final model, which suggests that in some cases pruning can be useful as an
architecture search paradigm.

NYU SAI LAB Liu, Zhuang, et al. "Rethinking the value of network pruning." arXiv preprint arXiv:1810.05270 (2018). 45

Taxonomy of Pruning

e Pruning techniques can be classified from different perspectives
o lterative pruning, zero-shot pruning

Structured pruning, unstructured pruning, N:M pruning

Weight pruning, activation pruning

Static pruning and dynamic pruning

Pruning for inference, pruning for training

O O O O

NYU SAI LAB

46

Unstructured/Structured Pruning
¥ E 0 e F
& 0 7 F
Origﬁgh @ E ﬂ ﬁ

K J
e Structured pruning is amenable to hardware perfor e, due to the regular sparsity
distribution.

nel Filter

NYU SAI LAB

Unstructured/Structured Pruning

lrregular chular - - - Baseline —*— Fine-grained Pruning (OD) Pruning Vectors (1D)
—+— Pruning Kernels (2D) —&— Pruning Filters (3D)

[TT] - , 1
S,
79.0
78.5
Fine-grained Vector-level Kernel-level Filter-level 78.0

Sparsity(0-D) Sparsity(1-D) Sparsity(2-D) Sparsity(3-D) 20 92 94 o— 08 98 Y

©
o
(&

©
o
o

Top-5 Accuracy
~
0
(]

e Unstructured sparsity has a better accuracy than structured sparsity.
e We can apply the same method as the unstructured pruning to prune a group of

parameters.
NYU SAI LAB Mao, Huizi, et al. "Exploring the granularity of sparsity in convolutional neural networks." Proceedings of the IEEE 48
Conference on Computer Vision and Pattern Recognition Workshops. 2017.

Network Slimming

channel scaling channel scaling

i-th conv-layer factors (i+1)=j-th i-th conv-layer factEs (i+1)=j-th
— conv-layer conv-layer
@ Lm . A —(® 70 i
.5 0.001 [
® 029 pruning "—. ® 029
£.30.003 [] " —}
@® 03820

initial network compact network

e We associate a scaling factor (from a batch normalization layer) with each filter in convolutional
layers. Sparsity regularization is imposed on these scaling factors during training to
automatically identify unimportant filters.

L=3 U(f(W)y)+x1)_|pil
|

(z,y)

NYU SAI LAB Liu, Zhuang, et al. "Learning efficient convolutional networks through network slimming." Proceedings of the IEEE 4

international conference on computer vision. 2017.

Batch Normalization

X _
Batch Norm Y, = acc—“c +B. ForeachceC

o = {oc}, B={B3 = (e}, o = {0}

e For each channel c, we have:
o Xc: (HW x B)
o Mc and dc are the mean and standard deviation of Xc.
o dc and Bc are learnable parameters
O dc, PBe, U, Oc are scalers
e Overall, we have:
o M, 0,aandp all have a length of of C
o M, 0,aand are all fixed during the inference
o M, O are statistics based on the training dataset

50

Batch Normalization: During Inference

e Given all the parameters are fixed, for each channel ¢, we have:

Yc:ac +/Bc:—Xc+(,Bc—) |::>YvC:pCXC+qC
c Oc s
Filters
Input Feature . Output feature
maps i maps
C .“ Conv ’_ ‘.0 B t h
—_— : —> —> atc —
: —
H | X Normalization Y'C pCXC 2 dc
— 1
W :

e pc can be merged into the CNN weights.
i e (c can be merged into the CNN bias.

NYU SAI LAB .

Batch Normalization

e For each channel ¢, we have:

Xc — M (%
Yc:ac—+/3c: _Xc+(;Bc_
c Oc

Filters
Input Feature
maps
c.”’ i
Conv
H o

NYU SAI LAB

Qcllc

c

% P

% D2

% PN

) = Y =pXc+qc

We can fold in the p and g to
the weights and bias of
convolutional layer during
inference and reduce the online
computational cost.

52

Network Slimming

e |asso regularization is imposed on the
scaling factors of batch normalization during
training to automatically identify unimportant
channels.

e g(.)is the lasso I1-norm g(.) = Z|pi|

L= Uf(z,W) +/\Z|p|

(z,y)

e The unimportant channel are naturally
eliminated during the training process.

Filters
Input Feature % D
maps
% P2
% PN

Add a lasso loss on pi

Liu, Zhuang, et al. "Learning efficient convolutional networks through network slimming." Proceedings of the IEEE

NYU SAI LAB intérnationa; conférence on computer vision. 2017.

53

N:M Sparsity

Column wise

2:4 pruning Compression e DNN with structured sparsity can
——> :
be easily adopted for
iz acceleration.
41212 e On the other hand, DNN with
1 Z unstructured sparsity is hard to
: accelerate.
Dense 2:4 sparse Compressed Indices
weight tensor weight tensor weight tensor (ind_w)

e N:M sparsity is proposed as a middleground between structured and unstructured
sparsity.
e 2:4 sparsity is supported in Nvidia V100 GPUs.

U S I L Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
NY A AB array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming Languages and Operating Systems. 2019.

N:M Sparsity

4x1 processor

MAC -._ array
e + -0.2(-04 S
iz v MAC—>
1 Co—=out T o
2|1 R A Mad—> €
1lls| Xi | Xe /R ©
2:4 compressed Indices [| ; 1
weight tensor 'J L' / MAC—
Inputs | Xo | Xi | Xa| Xa |/

e N:M sparsity is proposed as a middleground between structured and unstructured
sparsity.
e 2:4 sparsity is supported in Nvidia V100 GPUs.

U 8 I L Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
NY A AB array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming Languages and Operating Systems. 2019.

Cascade Effect of Filterwise Pruning in CNN

BN+ReLU of Iayer | Convolutlon of layeri+1

1 N

Zero inputs

ﬁ
AH—l Wl+1

Al w!

Convolution of Iayer N

&
\

Fllter
Filter

gl

Assume the bias of the batch normalization is zero.
Filter pruning at layer | can also result in weight and input sparsity in layer 1+1.

[]
e When the bias is not zero, the feature maps of layer i+1 will contain a uniform constant value

56

NYU SAI LAB

Taxonomy of Pruning

e Pruning techniques can be classified from different perspectives
o lterative pruning, zero-shot pruning

Structured pruning, unstructured pruning, N:M pruning

Weight pruning, activation pruning

Static pruning and dynamic pruning

Pruning for inference, pruning for training

O O O O

NYU SAI LAB

57

Pruning on Input Activation

e \Why pruning can not be applied to input activation?
o Large computing cost to determine the importance scores.
o Due to the usage of ReLU, activation in CNN are 50% sparse, but with
irregular sparsity distributions.

Row wise
2:4 RelLU Compression
[> [)
-0.4/0.3(0.1]0.1 0 |0.3|0.1] 0 0.5(0.30.1/ 0.6| Compressed
0.5[-0.3-0.10.3 05/0[0|0 0.4[0.2|0.5| 0.3| InPuttensor
-0.1/0.2|-0.1{0.6 0 |0.2] 0 |0.6 +
2(3(3[1 Indices
0.4{-0.2|0.5/ 0.3 0.4 0 |0.5/0.3 R (ind_a)
Dense 2:4 sparse
Input tensor data tensor

NYU (S I L B Zhang, Sai Qian, et al. "JointNF: Enhancing DNN Performance through Adaptive N: M Pruning across both Weight and
A A Activation." Proceedings of the 29th ACM/IEEE International Symposium on Low Power Electronics and Design. 2024.

Taxonomy of Pruning

e Pruning techniques can be classified from different perspectives
o lterative pruning, zero-shot pruning

Structured pruning, unstructured pruning, N:M pruning

Weight pruning, activation pruning

Static pruning and dynamic pruning

Pruning for inference, pruning for training

O O O O

NYU SAI LAB

59

Static vs Dynamic Pruning

e Conventional pruning adopts static pruning criteria and permanently removes components.
e Dynamic pruning exploits input-specific characteristic pruning criteria and preserves the entire
network structures and accelerates the networks by dynamically skipping unimportant components.

normalize
—» —> " .
convolution (+ bias) e a channel-wise importance
Xi_1 ‘\\ Conv (xi—1) norm (conv; (x;-1)) + B, measure is generated.
sparsity\/\

subsample
channel saliency multiple winners
predlctor take all wta
g multlply E—
ReLU) b
ss (x1-1) (x1-1) i (X1-1) (+ Rel

NYU SAI LAB Gao, Xitong, et al. "Dynamic channel pruning: Feature boosting and suppression." arXiv preprint arXiv:1810.056331 (2018). 60

Taxonomy of Pruning

e Pruning techniques can be classified from different perspectives
o lterative pruning, zero-shot pruning

Structured pruning, unstructured pruning, N:M pruning

Weight pruning, activation pruning

Static pruning and dynamic pruning

Pruning for inference, pruning for training

O O O O

NYU SAI LAB

61

Pruning during DNN Training

NYU SAI LAB

dL
| 56 oL
dO

dL [fcorconv
'%‘ a
y dl] SDGP for 2:4 Sparsity
W D EREE
| |8 ®
: (%] [
. dense

after
pruning

dL
dl

McDanel, Bradley, Helia Dinh, and John Magallanes. "Accelerating dnn training with structured data gradient pruning."

2022 26th International Conference on Pattern Recognition (ICPR). IEEE, 2022.

62

Topics

e \Why pruning?

o Running cost of CNNs and Transformers
Sparse matrix encoding

General pruning techniques
Transformer pruning

Large model pruning

NYU SAI LAB

63

Multi-headed Attention

Multi-Head Attention

e Q, K, Vtensors are broken into multiple components along the embedding 4
dimension. Linear
o (BLE) x (ExE) > (BxLxE) f
o (BLE)— (B.M,L EM) — (B,M,L,D), where D=E/M Goncat
e All the following operations can be performed independently over each head M. vy
o QKT—(B,M LxD)x (B,M,DxL)— (B, M, LxL) A :
o Softmax(QKT) — (B,M,LxL) Scaled Dot-Product IIZ h
o Softmax(QKT) x V — (B,M,LxL) x (B.M,LxD) — (B,M,LxD) — (BxLxE) Attention
A: | A» | Ab]
Linear Linear Linear

Vv K Q

Michel, Paul, Omer Levy, and Graham Neubig. "Are sixteen heads really better than one?." Advances in neural information

NYU SAI LAB processing systems 32 (2019).

64

Multi-Head Attention

BxxE B.M,LxL B.M,LxD
ExE QKT Q(B.M,LxD
BxLxE B.M,LxD B.M,LxD B.M.LxL
BxLxE? BxMxL2xD= BxMxL2xD=
BxL2xE BxL2xE

e The introduction of multiple heads do not change the
computational cost of the transformer.

NYU SAI LAB

Multi-Head Attention

s

Linear

1

Concat

A

Scaled Dot-Product

Attention ﬂ& h

1N £l

A A
L L

Linear Linear

o7

K Q

65

Pruning on Transformers: Token Pruning

e Given input x, the first step in calculating self-attention is to create
three vectors from each of the input x’, denoted as: Query (Q), Key
(K), Value (V).
o (BLE) x (ExE) —» (BxLxE)
e The second step in calculating self-attention. This will compute the
attention score between each pair of input tokens.
o QKT—(B, LxE) = (BExL)— (B, LxL)
e Scale and normalize the score using softmax.
o Softmax(QKT) — (B,LxL)
e Multiply each value vector by the softmax score.
o Softmax(QKT) » V
o (B,LxL) = (B,LxE)— (B,LxE)
e Pass the result to the linear layer, sum with the input.

[Reshape] [Reshape] [Reshape]

i i i

(linear] [linear | [linear)

T |

X

66

NYU SAI LAB

Pruning on Transformers: Token Pruning

13 ” 128
| love AI” —3[C1

(3128) (3.128) (3.128)

3,128)
QEE K= VE 2 Scale and [(
! 1 ! Step 3 3|QK"| <smax . -
Step 1 [linear 1 [linear 1 [linear 1 Step 5
T T]
| 3 128 128
e step 4 3] o —[]]
(3.128)
3 Find unimportant
Step 2 Q(3,128) K(3,128) - tokens
| — 3|QK

m

NYU SAI LAB o

Pruning on Transformers: Token Pruning

Importance
score s Layer [

03101105 - ~ =

X1 X2 X3 i 5 N, n
(1) = (h1l
Hard Pruning s\ (xi) = ‘@ ;; Z Z A)(Xi, Xj)
h=1 j=1
X1 (Pruned) X3 J
0.2 » = ~
Threshold 800 | Layer !+ 1

e One simple approach involves computing the importance score of each token, and
remove the tokens whose importance score is lower than a predefined threshold.

NYU 8 I L B Kim, Sehoon, et al. "Learned token pruning for transformers." Proceedings of the 28th ACM SIGKDD Conference on
A A Knowledge Discovery and Data Mining. 2022.

68

Pruning on Transformers: Token Pruning

QKV ¥
Attention J

y iattention_prob
attention_out ¥

—
QKV FC

Q Accumulate
—
Importance Scores

Cumulative toKen and head

<«— 10tokens —>

importance scres

8 heads

[top-k)

Tokens and heays to be pruned

FFN Q

_—

QKV F

Cascade token pruning:
Prune 2nd token .\

Cascade head pruning:
Prune 3t head

QKV
Attention]
attention_prob
attention_out ¥
Accumulate FFN
Importance Scores | i kv EC

Cumulative toKen and head
importance scgres

top-k

Tokens and heabs to be prune

< 7th and 9" tokens

Cascade token pruning:
o:Prune another 2 tokens:

Cascade head pruning:

Prune another head:
7t head

e Tokens and heads can be pruned jointly, the removed tokens and heads will result in a
much reduced computation for all the following layers.

NYU SAI LAB

Wang, Hanrui, Zhekai Zhang, and Song Han. "Spatten: Efficient sparse attention architecture with cascade token and head
pruning." 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2021.

69

Pruning on Transformers: Token Pruning

Layer 1 This is the best restaurant, and | will be returning for another meal.

15 tokens e~
Layer 4 This is best restaurant I will be returning for another meal
11 tokens -
Layer 8 best restaurant returning another
4 tokens -
Layer 12 best restaurant
2 tokens

Classification Positive Sentiment

e Not all the tokens are necessary to generate the final results.

e Unimportant tokens can be removed progressively as an input sequence passes through
transformer layers.

NYU SAI LAB

S &
© e DN o
6 FEFE N\ @S S

This Key
is
the [

best

X
O
& &
L

restaurant .\]
and 2
-
(<}
will
be
returning
for [|
another
meal .
~ Column Mean
N o N

Kim, Sehoon, et al. "Learned token pruning for transformers." Proceedings of the 28th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining. 2022.

70

New Pruning Dimension: Head

Prlumng to the valuewise and channelwise pruning, transformer allows for

b,

a new type of pruning: multi-head pruning. {
Linear
1
Concat
(1,197,768) —» (1,12, 197,64) — (1, 4, 197, 64) —
Input Input with 12 heads Input with 4 heads i
4 [n[At[
Linear Linear Linear
¥ 7 7
\Y, K Q
NYU ‘SAI LAB Voita, Elena, et al. "Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned.”
arXiv preprint arXiv:1905.09418 (2019).

4l

Multi-headed Attention

e \We observe that the majority of attention heads can be removed without
deviating too much from the original score. Surprisingly, in some cases
removing an attention head results in an increase in BLEU/accuracy.

o
o0
s

o
o

Accuracy
o
=

o
o
N

T T T T T T 0.0 T T T T T T
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

Percentage pruned Percentage pruned
(a) Evolution of BLEU score on newstest2013 (b) Evolution of accuracy on the MultiNLI-matched
when heads are pruned from WMT. validation set when heads are pruned from BERT.

NYU SAI LAB processing systems 32 (2019).

Multi-Head Attention

I

Linear

1

Concat

11

Scaled Dot-Product

Attention y h

(10 K1l

v 1 A

[e
Linear Linear |]’

K Q

Michel, Paul, Omer Levy, and Graham Neubig. "Are sixteen heads really better than one?" Advances in neural information

72

Pruning on Transformers: Head Pruning

\%
[Reshape] [Reshape] [Reshape]
f f f
(linear] [linear | [linear)
T |
NYUSAILAB X

Xi is an embedded vector of ith token.
There are in total n tokens.
The output vector of gth token can be expressed

as. -
Attty w, .w,.w, (X, q9) = W, o;Wex;
i=1
oW]I Wiz,
where «; = softmax
Vid

If we further expressed with multi-head attention, the

output vector can be expressed as:
~‘er1

MHALtt(x, q) = Z EnAlttyyn Wh Wh Wh (x,q)
h=1

Where the €, are mask variables with values in {0, 1}.

73

Pruning on Transformers: Head Pruning

e ¢&n denotes the importance of hth head.

Ny,

MHALt(x, q) ZE;,AHH; wiwrwn (%,9)
h=

e To decide which head is unimportant, we can express the sensitivity score as:
0L(x)
O

e Where x is a subset of training data used for calibration purpose.
e \We can then remove the heads h with a low importance score.

Ih =]E.'L‘NX

NYU SAI LAB

74

Topics

Pruning in CNN and transformers
Sparsity encoding

General pruning techniques
Transformer pruning

Large model pruning

NYU SAI LAB

75

Pruning on Large Models: KV cache Pruning

Block N

Block 3

FEN

Block 2

SA

Block 1

GPT-2

NYU SAI LAB

AT

t

GPT-2

!

is

f

GPT-2

<BOS>

Round 1

!

L> <BOS>, Al

Round 2

awesome

f

GPT-2

!

><B0S>,AI,is

Round 3

Each token is generated in an autoregressive manner.

Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAl blog 1.8 (2019): 9.

<EOS>

f

GPT-2

!

><B0S>,AI,is,awesome

Round 4

76

Pruning on Large Models: KV cache Pruning

NYU SAI LAB

4 N
i
[Softmax]
Scale
I
[QK]

Q] K | L
[Reshape] [Reshape] [Reshape]
f
| Ilnear] [linear | | Ilnear)
\. J

S

FFN

|

Normalization |

\
\

€

SAI

1[Normalization |

\

4

[Linear& |
| Softmax |

A

Block

A

Block

A

Embedding |

N

A

e \We need to buffer the v and k for later usage.

77

Learning
A

Linear &
Softmax

~\

A
Block
A
Block
A

| Embedding |
—

L
Machine

J

MacHine

NYU SAI LAB

KV cache

Round 1

Pruning on Large Models: KV cache Pruning

B Key vectors m Value vectors

IS
R S
Linear &
Softmax
1 achne
Block [[| | |
“Learning”
A
Block
- A \ KV cache
Embedding
\ |
Learning
Round 2

fantastic
o
Linear &
Softmax
* L]
“Machine”
Block [| | |
3 “Learning”
II!-IEIII
Block 15
- A \ KV cache
Embedding
|
is
Round 3

78

Pruning on Large Models: KV cache Pruning

Accmulative Attention at Accmulative Attention at Accmulative Attention at

Layer 1 Layer 10 Layer 20
Layer 20 Head 0 Layer 20 Head 1 Layer 20 Head 2
Special Tokens Punctuation Locality Others
e We show the attention score of each token. Layersn Layer 60 Layer 70

e Different attention heads usually have different
importance scores on KV vectors.

e The importance of KV vectors also varies across ‘ ' ‘
layers.

NYU SAI LAB Ge, Suyu, et al. "Model tells you what to discard: Adaptive kv cache compression for lims." arXiv preprint arXiv.2310.01801 .4
(2023).

LLM Pruning: Wanda

Magnitude Pruning

S =|W|
40|11 V4 olSAEN! |« FolEGHEG
W(3|-2[-1|-3|+3|2|1|3)+3]|-2]|0]-3
31|02 {3 [FMEE 2| |-3EAEH 2
Weights Weight Importance Pruned Weights

NYU SAI LAB

grouped per layer

A zero-shot pruning method.
Prune the weights by considering the input statistics.
For each weight, if the corresponding input’'s magnitude is large, the output will also be large.
Need some training samples for calibration.

Wanda

TSl S=IWl- i
W |3|2|-1|3|{4]0/8]31 |4]0]1]0
3|1|0|23]4]8]9]l»0]0]|1]3
BaoniB0NE
IXl2] 1] 2 ! 3 Weight Importance ~ Pruned Weights

Weights and activations

grouped per output

Sun, Mingjie, et al. "A simple and effective pruning approach for large language models." arXiv preprint arXiv:2306.11695

(2023).

80

Presentation

e Deep compression: Compressing deep neural networks with pruning, trained quantization and

huffman coding (Kangwei Feng)
e Learning structured sparsity in deep neural networks (Zhengping Zhu)
e Rethinking the value of network pruning (Ruichen Gao)
e A Simple and Effective Pruning Approach for Large Language Models (Jason Widjaja)

NYU SAI LAB

81

https://docs.google.com/presentation/d/1ktgBRNxszicf-dO3bUnl8b5A5CCwXlXKDaEycQHDTzI/edit?usp=sharing
https://docs.google.com/presentation/d/1ktgBRNxszicf-dO3bUnl8b5A5CCwXlXKDaEycQHDTzI/edit?usp=sharing
https://docs.google.com/presentation/d/1N599sSEc6vTjqaVp7wCjRSDegbS805MVrIENbhUYpd8/edit#slide=id.g324e1b0766c_0_235
https://docs.google.com/presentation/d/1xxLSixpgRJI4bar7GfV-_65D9NChTvsf6_8UkfOJ-Z4/edit#slide=id.g334039c70f2_0_99
https://docs.google.com/presentation/d/11-HL28bpv9qzhMlEbqQs6N19vDPZjFTLood9Mwg3q98/edit?usp=sharing

Code Demo

https://colab.research.google.com/drive/1Qos8mnHNtYpy492YnOPJDpCEV-itebOF ?usp=sharing

NYU SAI LAB

82

